Noman Flight Research Group 無人航空機(ドローン)の研究会です

広 告

5.2 操縦者に求められる操縦知識【教則学習(第4版)】

2025年6月2日  2025年6月3日 
5. 無人航空機の操縦者及び運航体制    5.2 操縦者に求められる操縦知識

5.2 操縦者に求められる操縦知識【教則学習(第4版)】

教則の本文を黒色に、独自に追記した補足説明や注釈を別色で記載しています。

5.2.1 離着陸時の操作

(1) 離着陸時に特に注意すべき事項(回転翼航空機(マルチローター))

 1) 離陸

回転翼航空機(マルチローター)はコントローラー等によるスロットル操作によって高速に回転する翼から発せられる揚力が重力を上回ることにより離陸する。 機体重量 1.5kg ほどの回転翼航空機(マルチローター)を例にすると、離陸直後から対地高度1m程度までの間は、回転翼から発せられる吹きおろしの気流が地面付近で滞留し、揚力が増す現象「地面効果」が起こりやすくなる。

2) ホバリング

離陸後、任意の対地高度で一定の高度と位置を継続的に維持することをホバリングという。 ホバリング状態の機体は回転翼から発せられる揚力と、重力のバランスが保たれている状態を維持している。
回転翼航空機(マルチローター)には飛行時に高い安定性を確保するために方位センサ、地磁気センサやGNSS受信機、気圧センサが用いられている。 緊急時にはセンサ類に頼らない手動操作によるホバリングも要求される。

3) 降下

機体を降下させるには、スロットル操作を徐々に弱め揚力を減少させる。 機体を垂直降下させる時に、吹きおろした空気が再び吸い込まれ、回転翼の上下で空気の再循環が発生し急激に揚力を失う現象「ボルテックス・リング・ステート」が発生する。降下の際は水平方向の移動を合わせて操作することで墜落防止対策となる。

4) 着陸

 降下を継続し着陸を行う際には、対地高度に応じて降下速度を減少させる。着地後にコントローラーでローターの回転を停止させる。 

5) GNSSを使用しない操作

緊急時にはGNSS受信装置による機体位置推定機能を使用しない機体操作が求められる。

6) GNSSを使用しないホバリング

ホバリング中 GNSS 受信機能を無効にすると、機体周辺の気流の影響で水平位置が不安定となるためエレベーター操作及びエルロン操作により水平位置を安定させホバリング飛行を維持させる。

7) GNSSを使用しない着陸

上述の操作によりホバリングを安定させながら、スロットル操作により機体を降下させ着陸させる。 機体を垂直降下させる時に発生する「ボルテックス・リング・ステート」や、「地面効果」を抑制するために、細かくエレベーター又はエルロン操作などを行いながら、機体を着地させ着陸を完了させる。 

地面効果 [ground effect] 
地面の近接によって引き起こされる航空機の空力反応の変化を起こす現象をいいます。 航空機、ヘリコプター、その他の飛行機械が地面に非常に接近して飛行する場合(地面効果翼機など)、揚力が増加します。この揚力は、 ダウンウォッシュのたわみによる迎え角の効果的な増加によって引き起こされ、誘導抗力の増加はありません。この効果は、航空機が地上から翼幅の約半分またはローターディスクの直径の4分の3より高くなると、地面効果は急速に減少します。 地面の効果に影響を与える他の要因は、地面の性質や、その傾斜などで地面近くで動作する回転翼航空機の場合、誘導抗力が減少し、流入速度が低下するため、揚力ベクトルがより垂直になります。渦輪は小さくなり、より少ない出力でホバリングを維持することができます。

マルチコプターの地面効果

ボルテックス・リング・ステート [vortex ring state]
セットリング・ウィズ・パワー [settling with power]と呼ばれる場合もあります。
ボルテックス・リングに留まってしまう(はまり込む)状態の事で、
飛行中にボルテックス・リング・ステート(渦輪状態がローターを飲み込み、揚力の深刻な損失を引き起こす事を言います。この状態では、ローターは周囲の流れ場に飲み込まれ、それ自体のダウンウォッシュによって誘発され、突然揚力を失います。揚力を増すためにローターの出力を上げ揚力を得ようとすればするほど、ボルテックス(渦)の動きを増大させるだけで、揚力を増やすことが出来なくなります。ボルテックス・リング(渦輪)は安定した流体力学現象であるため、それらから回復する最良の方法は、揚力を再確立するために横方向に回避し、ボルテックス・リングから抜け出してから、乱気流をおこすためにローターの出力を上げてボルテックス・リングを分解することです。
ボルテックス・リング・ステート


(2) 離着陸時に特に注意すべき事項(回転翼航空機(ヘリコプター))

1) 離着陸地点の選定

  • 水平な場所を選定すること。離着陸直前は、機体が水平となるため、傾斜地ではテール部などが地面に接触する恐れがある。
  • 滑りやすい場所を避けること。離陸前は、ヨー軸まわりの制御が不十分な場合があり、ヨー軸を中心に回転する恐れがある。
  • 砂又は乾燥した土の上は避けること。ローターのダウンウォッシュによる砂埃等が飛散し、視界を遮るおそれがある。 

2) 離陸方法

  • 十分にローター回転が上昇してから、離陸すること。ローター回転が低い状態で無理に離陸させると、機体の反応が遅れることがあり、危険である。
  • テールローターの作用で、離陸時に機体が左右いずれかに傾く場合がある。傾く方向はローターの回転方向により異なる。予め傾く方向を確認した上で、離陸させること。
  • ローター半径以下の高度では、地面効果の影響が顕著となり、機体が不安定になる。離陸後は速やかに地面効果外まで機体を上昇させること。
  • やむを得ない場合を除き、垂直方向の急上昇は避けること。ローター回転が低下し、機体が不安定になるおそれがある。 

3) 着陸方法

  • 地面に近づくにつれ、降下速度を遅くし、着陸による衝撃を抑えること。衝撃が大きい場合、脚部が変形又は破損するおそれがある。
  • 地面効果範囲内のホバリングは避け、速やかに着陸させること。
  • 接地後、ローターが停止するまで、機体に近づかないこと。 
水平な場所を選定すること。
周囲に障害物がなくても、傾斜した場所へ離着陸は危険です
landing

ダウンウォッシュ
揚力を得るために下方へ作り出される風のことをいいます。

(3) 離着陸時に特に注意すべき事項(飛行機)

1) 離着陸地点の選定

  • 滑走路は水平で草などが伸びていない場所を選定すること。傾斜地では滑走中に不安定になり、また草などが伸びているとプロペラに接触し飛行ができないおそれがある。
  • 飛行機の離着陸は風向が重要である。離着陸の方向は向かい風を選ぶのが原則である。横風であってもできる限り向かい風方向を選択する。追い風で行うと失速の危険性が生じ、失速しない速度にすると滑走路を逸脱する危険が生じる。 

2) 離陸方法

  • 向かい風方向に滑走できるエリアを確保できたら離陸操縦に入る。
  • 風速を考慮し適切なパワーをかけてエレベーターによる上昇角度をとり離陸する。
  • 上昇角度は失速しないように設定する。安全な高度まで機体を上昇させる。 

3) 着陸方法

  • 向かい風方向に滑走できるエリアを確保できたら着陸操縦に入る。
  • 地面に近づくにつれ、降下速度を遅くし、滑空着陸による衝撃を抑えること。衝撃が大きい場合、脚部が変形又は破損するおそれがある。
  • 目測の誤りにより滑走路を逸脱することがあるので、厳重に注意が必要である。 

(4) カテゴリーⅢ飛行において追加で必要となる離着陸の注意点〔一等〕

カテゴリーⅢ飛行は立入管理措置を講ずることなく行うものであるため、そ の飛行形態に応じ て 第三者の立入りがあるものと認識したリスク評価において、離着陸に関して考慮する注意点の例としては以下のとおり。
  • 離着陸に際しては、 第三者及び第三者の物件と 機体が接触するなど第三者の安全が損なわれるおそれがないようにする。
  • 離着陸時ローター から発せられる 風 の影響を受け 、物などが 飛ばされ 、第三者及び第三者の物件に危害を加えることが ないようにする 。
  • 第三者の物件等が多いエリアでの離着陸が考えられることから、家屋の壁面などの構造物の近接による機体のタウンウォッシュの跳ね返り等 により、 離着陸時に機体が不安定になることが考えられる ような環境 は あらかじめ 離着 陸 エリアから 除外する 。
  •  第三者の物件等が多いエリアでは、 離着陸エリア上空周辺に電線などの障害物がない、又はこれを回避できる空域をあらかじめ選定する 。

5.2.2 手動操縦及び自動操縦

(1) 手動操縦・自動操縦の特徴とメリット

1) 無人航空機の操縦方法(自動操縦と手動操縦)

無人航空機は優れた安定性と高い飛行性能から、人による手動操縦だけでなく、アプリケーションなどにより事前に設定した飛行経路を正確に飛行することが可能となっている。 飛行自体は自動で飛行し、機体に付属している撮影用カメラなどのみ人が操作するような複合的な操縦も行える。
空中写真測量などによる飛行では測地エリアを指定するのみで自動的に飛行経路や撮影地点をプランニングする機能も備えられている。
手動操縦は送信機のスティックにより機体の移動を命令して行う。操縦者の操縦技量によって飛行の安定性に差が生じるが、操縦技量が向上すると自動操縦では実現できない複雑で変化に対応した機体の操作が行える。 

2) 手動操縦の特徴とメリット

無人航空機の安定飛行に必要な GNSS 受信機やセンサを用いた機体を、コントローラースティックで意図した方向に飛行させるが、その制御は全て人が行う。
操縦者の習熟度によって飛行高度の微調整や回転半径や飛行速度の調整、遠隔地での高精度な着陸など細かな操作が行え、複雑な構造物の点検作業や耕作地の農薬散布、映画のような芸術性を要求される空撮などでは手動操縦で行われることもある。
安定した飛行に使われている GNSS 受信機や電子コンパス、気圧センサなどが何らかの原因により機能不全に陥ったときには手動操縦による危険回避が求められる。
定められた航路を高精度に飛行をするなど、高い再現性を求められる操縦には不向きである。 

3) 自動操縦の特徴とメリット

飛行を制御するアプリケーションソフトに搭載されている地図情報に、予め複数の飛行時のウエイポイント(経過点)を設定し飛行経路を作成する。
ウェイポイントは地図上の位置情報の設定だけでなく、機体の向きや高度、速度など詳細な設定が可能である。
手動操縦に比較して、再現性の高い飛行を行うことができるため、経過観察が必要とされる用地や、離島への輸送、生育状況を把握する耕作地などの飛行に利用される。 

(2) 自動操縦におけるヒューマンエラーの傾向

ウェイポイント設定時、飛行経路上の障害物等の確認不足によって衝突や墜落が発生することが想定できる。設定した飛行経路上の障害物等は事前に現地確認を行うこと。 

(3) 手動操縦におけるヒューマンエラーの傾向

手動操縦は無人航空機を精密に制御できる反面、操縦経験の浅い操縦士が操作を行うと様々な要因で意図しない方向に飛行してしまう場合がある。
これは操縦者の視線と回転翼航空機の正面方向が異なる場合に発生しやすい。さらに機体と操縦者との距離が離れると機体付近の障害物などとの距離差が掴みにくくなり接触しやすい状況となる。
これらのリスク回避には、機体をあらゆる方向に向けても確実に意図した方向や高度に制御できる訓練や、指定された距離での着陸訓練などが有効となる。 

ヒューマンエラー
人間が犯す誤りや失敗の事を言います。機械やシステムの事故の原因が、人間のミスに起因する場合のことで、人的エラーや人的過誤と言われる場合もあります。
JISの Z 8115で規定される、ディペンダビリティ(総合信頼性)用語では「
人間が実施する又は省略する行為と、意図される又は要求される行為との相違。」と定義されています。

(4) 自動操縦と手動操縦の切り替えにおける操作上の注意と対応

自動操縦中、下記のような状況下で手動操作に切り替える場合がある。
  • 作業指示による手動操作
  • 何らかの原因で不安定な飛行と判断した場合
手動操縦に切り替えた後は、急な飛行速度の低下や失速に備えた操作準備や、障害物への接近を避けるための機体方向の確認、ホバリングしての機体の安定性や周囲の安全の確認などが必要となる。 また、必要に応じ、鳥などの野生動物からの妨害を想定した防御等、手動操縦への切り替えを速やかに行える等の体制を整えておくこと。

(5) カテゴリーⅢ飛行において追加となる自動操縦の注意点〔一等〕

カテゴリーⅢ飛行は立入管理措置を講ずることなく行うものであるため、その飛行形態に応じて 第三者の立入りがあるものと認識したリスク評価において、自動操縦に関して考慮するべき注意点の例としては以下のとおり。
  • 可能な限り第三者の立入りが少ない飛行経路及び送電線や構造物が障害とならない飛行範囲を事前に確認し設定すること。
  • 飛行経路付近に地上の第三者の立入りが少ないこと等の条件を考慮した緊急着陸地点や不時着エリアを 予 め設定すること 。
  • 第三者がいる地上の状況が想定と異なる場合等に備え、 手動操縦への切り替えも含め、状況変化に 速やかに 対応できる 体制を整えておく こと 。 

5.2.3 緊急時の対応

緊急時には、離陸地点などに戻すことを前提とせず、速やかに近くの安全な無人地帯へ不時着させる。

(1) 機体のフェールセーフ機能

送信電波や電源容量の減少などにより飛行が継続できない場合、又は継続できないことが予想される場合は、予め飛行制御アプリケーションのフェールセーフ機能により、自動帰還モードへ切り替わり、離陸地点へ飛行する。さらにバッテリー残量が極端に少ない場合などはその場で自動着陸を試みる。
フェールセーフ機能発動時、機体の動作をホバリング、その地点での着陸、自動帰還などの設定を行うことができる機体もある。
フェールセーフ機能発動中にバッテリー残量不足等の飛行が継続できない場合、又は予想される場合、機体は着陸動作に遷移し着陸を試みる。

フェールセーフ
JISの Z 8115で規定される、ディペンダビリティ(総合信頼性)用語では「故障時に、安全を保つことができるシステムの性質」と定義されています。
トラブルが発生した場合、または、発生する可能性が高い場合などに、安全を保つように自動的に働く機能の事です。
無人航空機の機体の場合、コントロールを電波で行っている場合が多いと思いますが、機体がこの電波を受信できなくなった場合や、バッテリーの残量が少なくなった場合など、ある一定の条件で、安全を保つように、フェールセーフ機能が備わっている場合があります。
どのような条件で、フェールセーフ機能が発動し、どのような動作を自動的にするのかを、あらかじめ知っておくことは大変重要な事だと思います。
機体のバッテリーの残量を少ないと判断した機体が自動で飛行の離陸地点へ戻ってくるとします。この時、どのようなルートを通って帰ってこようとするか、全くわからなければ事故につながる可能性があります。飛行高度など事前に障害物をできる限り避けるような高度で飛行して戻ってくれた方が良いはずです。しかし、バッテリーの残がそこまで持つのでしょうか。このような場合、最短で帰ってきてくれた方が良いともいえます。このように、機体はいい塩梅を自動で判断してくれません。そこで、フェールセーフ機能の動作を事前に確認、設定して、いい塩梅をセットしておくことが必要です。

(2) 事故発生時の運航者の行動について

運航者は、事故発生時においては、直ちに無人航空機の飛行を中止するとともに、負傷者がいる場合には、第一にその負傷者の救護及び緊急通報、事故等の状況に応じた警察への通報、火災が発生している場合の消防への通報など、危険を防止するための必要な措置を講じ、次に当該事故が発生した日時及び場所等の必要事項を国土交通大臣に報告しなければならない。 

(3) カテゴリーⅢ飛行において追加となる緊急時対応手順〔一等〕

カテゴリーⅢ飛行は立入管理措置を講ずることなく行うものであるため、その飛行形態に応じて第三者の立入りがあるものと認識してリスクの分析及び評価を行い、その結果に基づくリスク軽減策を講じる必要がある。例えば、カテゴリーⅢ飛行の際に緊急対応が求められる場合に備えて、予め対応手順を設定するとともに、速やかに当該対応が実施できるよう訓練を実施することが考えられる。その際に考慮すべき項目の例を以下に示す。
  • GNSSによる位置の安定機能を用いない飛行訓練
  • 機体寸法に応じた緊急着陸地点の確保
  • フェールセーフ機能が動作しない飛行距離等の把握
  • 墜落時の安全優先順位の明確化
  • 機体が発火した際の消火方法
  • 緊急連絡網の作成
5.1 操縦者の行動規範及び遵守事項

タグ

広 告

広 告

人気の投稿

ノータム[NOTAM] の確認方法が変わります [AIS JAPAN] から [SWIM ポータル] へ

ノータムを確認できるWEBサイトが変更になります  令和7年2月10日~ 日本国内のノータム[NOTAM]などの航空情報は現在、国土交通省航空局が航空情報提供サービスWEBサイト「 AIS JAPAN - Japan Aeronautical Information Service Center」 https://aisjapan.mlit.go.jp/  で公開しています。このサービスは、無料で利用できますが、ユーザー登録とログインが必要となっています。 しかし、 令和7(2025)年1月10日より 、新しい航空情報共有基盤「 SWIM (System-Wide Information Management)」 https://top.swim.mlit.go.jp/swim/ の運用(登録)が開始されることに伴い、現行のAIS-JAPAN(Web)は 2025年2月10日に新サービス開始 と共に完全に廃止され、新しいSWIM(スイム)ポータルによる情報サービスへと移行します。現在AIS JAPANを利用しているユーザーも、この期日までに 改めてSWIM(スイム)ポータルへの登録が必要 となります。このSWIMサービスの利用について、当面の間、航空関係者(運航者、空港管理者、官公庁等)による利用とし、一般の方の利用は想定していません。と記載されています。 サービス開始の延期について2025/09/29に航空局交通管制部運用課より案内が出ています 【重要なお知らせ】SWIMによる情報サービス提供開始時期の見通しについて(更新)   【情報サービス利用審査開始】 令和7年10月6日(月)10時00分(日本時間)から各情報サービスの利用審査を開始します。利用申請にあたっては、各情報サービスの情報サービス概要、サービス説明書等を一読いただき、利用可能なサービスであるかを確認していただいた上で利用申請をいただけますようお願いいたします。   【情報サービスβ版の公開とプロモーション】 SWIMによる情報サービスβ版(情報サービスの正式版をリリースする前に公開をおこなうもの)の公開を予定しております。   ■β版公開期間 令和7年10月17日(金)9時00分 ~ 令和7年11月10日(月)17時00分(日本時間)   ■β版...

二等無人航空機操縦士 学科試験問題 模擬試験【練習問題】

無人航空機操縦者技能証明試験の学科試験問題をAIに作ってもらいました。 「無人航空機の飛行の安全に関する教則 第4版」を基に、AIに無人航空機操縦者技能証明試験の学科試験サンプル問題と同様の形式で試験問題風クイズを作成してもらいました。 これらの問題は過去の出題問題や予想問題ではなく、実際の学科試験と同じく教則の内容からAIが自動生成したものです。問題の正確性についてはAIによる生成後に人的チェックも加えて可能な限り確認しておりますが、完全性を保証するものではありませんので、あらかじめご了承ください。(問題に不備がありましたら 問い合わせフォーム よりご一報いただければ幸いです。) また、複数のAIに同様の指示で問題を作成してもらったため、それぞれのAIの特性や出題傾向の違いも見られるかと思います。そうした個性の違いも含めて、クイズ感覚でお楽しみいただければと思います。 これらの問題は教則の内容理解度を確認するツールとして作成しましたが、問題の質や網羅性を考慮すると、受験対策の一環としても十分にご活用いただけるレベルに仕上がっていると考えています。ただし、教則をしっかりと理解することを前提として、過去問題集や参考書と併用していただくことをお勧めします。  無⼈航空機操縦士の学科試験は <実施方法> 全国の試験会場のコンピュータを活用するCBT (Computer Based Testing) <形 式> 三肢択一式(一等:70問 二等:50問) <試験時間> 一等:75分 二等:30分 <試験科目> 無人航空機に関する規則、無人航空機のシステム、無人航空機の操縦者及び運航体制、運航上のリスク管理 上記の要領で実施されます。 従って、1問当りの回答時間は、単純に試験時間を、問題数で割ると、 一等は一問あたり約64秒 二等で36秒 で回答しないと間に合わない計算になります。これらの与えられた時間を意識しながら学習することもコツの一つかも知れません。  無⼈航空機操縦士の学科試験のベースになる教則ですが、これまで、学科試験の内容は「無人航空機の飛行の安全に関する教則(第3版)」に準拠していましたが、 ※ 令和7年(2025年)4月17日(木)より 、学科試験の内容は、「無人航空機の飛行の安全に関する教則 (第4版) 」 に準拠します。 と発表されました。...

人口集中地区(DID)の新しいデータの確認方法(令和4(2022)年6月25日~)

人口集中地区 DID(Densely Inhabited District) ドローンを飛行させる場合の許可が必要な飛行なのかどうかを判断する為の重要な基準になっている統計データの人口集中地区(DID)データが、 2022年6月25日から これまで利用していた平成27年版から、新しい 令和2年版 に、変更になりました。 これまで人口集中地区でなかった場所でも新たに人口集中地区とされている場合や、逆にこれまでDID地区であった場所でも除外されている場所など、変更されている場合があるので注意が必要です。 日本の国勢調査において設定される統計上の地区で、 人口密集地区の英語"Densely Inhabited District"の頭文字を取って「DID」とも呼ばれています。 市区町村の区域内で人口密度が4,000人/ km² 以上の基本単位区(平成2年(1990年)以前は調査区)が互いに隣接して人口が5,000人以上となる地区に設定されます。ただし、空港、港湾、工業地帯、公園など都市的傾向の強い基本単位区は人口密度が低くても人口集中地区に含まれています。都市的地域と農村的地域の区分けや、狭義の都市としての市街地の規模を示す指標として使用されます。 令和2年の国勢調査の結果に基づく人口集中地区は、国土地理院が提供している「地理院地図」、および政府統計の総合窓口が提供している、「地図で見る統計(jSTAT MAP)」を利用して確認可能です。 情報の内容はは同じですので使いやすいお好みの物を利用すると良いと思います。 国土地理院 地理院地図 人口集中地区令和2年 (総務省統計局) e-Stat 政府統計の総合窓口 地図で見る統計 (jSTAT MAP) 国土地理院 地理院地図  人口集中地区令和2年(総務省統計局) 確認方法 人口集中地区令和2年 (総務省統計局) 国土地理院 地理院地図  人口集中地区令和2年(総務省統計局)のキャプチャ

無人航空機 のための 気象情報 航空気象情報【教則学習・詳細】

無人航空機の飛行計画で活用できる、航空気象情報 無人航空機の飛行の安全に関する教則のなかで気象情報に関して、記載されています。 「6.2 気象の基礎知識及び気象情報を基にしたリスク評価及び運航の計画の立案」 6.2.1 気象の重要性及び情報源 (2) 安全な飛行を行うために確認すべき気象の情報源 この項目のなかで、 参考となる気象情報 として、「 実況天気図、予報天気図、悪天解析図 」が挙げられています。 教則にどのように挙げられているかは、下記に詳細があります。 6.2 気象の基礎知識及び気象情報を基にしたリスク評価及び運航の計画の立案 【教則学習(第3版)】 実況天気図、予報天気図の情報は、通常さまざまな気象情報のWEBサイトから得ることが出来ますが、悪天解析図は、耳なじみがないのではないでしょうか。「国内悪天解析図」として作成されているものを指していると思われますが、これは、通常の天気予報では、得ることが出来ない上空のある高度の風速や風力など、有人航空機のためではありますが、飛行に役立てるための特化型の気象情報です。航空の運航などに使用するための気象情報ですので、一般にテレビやラジオなどの天気予報として目に触れることはありません。 国内悪天解析図(ABJP) 気象レーダーや気象衛星画像に、航空機から通報された乱気流や着氷などの実況を重ね合わせ、それに予報官によるジェット気流の解析や悪天域に関する簡潔なコメント文を加えた図情報です。国内航空機の主な運航時間となる日本時間の6時から21時まで3時間ごとに一日6回作成されています。気象庁の航空気象情報提供システム(MetAir)で提供されています。 国内悪天解析図

無人航空機(ドローン)のノータム[NOTAM] の 読み方・見方【教則学習・周辺知識】

ノータムとは ノータム【NOTAM ( Notice to Airmen)】:航空従事者への通知 国が管理する航空当局(日本の場合は国土交通省航空局)が、航空従事者に対して発行する情報で、航空機の運航のために必要な情報を提供しています。 「NOTAM」ノータムは、 NO tice T o A ir M en の略称で、日本語に訳すなら「航空従事者へのお知らせ」という事です。航空情報の一つで、飛行場、航空保安施設、運航に関連する業務方式の変更、軍事演習のような危険の存在などについての情報で、書面による航空情報では時宜を得た提供が不可能な(端的にいえば間に合わない)場合にテレタイプ通信回線(CADIN及びAFTN)により配布されるものです。 ノータム【NOTAM (Notice to Air Mission)】:航空任務への通知 アメリカ連邦航空局(FAA:Federal Aviation Administration)は2021年12月2日から、NOTAM の頭字語を、Notice to Airmen から Notice to Air Mission に変更しました。この変更は名称によるジェンダー中立性を保つとともに、より広範囲な分野を包括する事を見据えてより正確な名称にするためのもので、小型無人航空システム (sUAS) 、無人気球など、他のいくつかの分野も含まれるためです。 女性もたくさん活躍している事や、無人機には人間が乗っていません(当然ですが)ので、旧名称の「Airmen」はないだろうという事です。したがって、航空任務への通知( Notice to Air Mission )という名称は、より実態に即した正確な名称に変更されたという事になります。 航空法で定められている「飛行に影響を及ぼすおそれのある行為」と、ノータムへの掲載について詳しい説明を説明しています。 飛行に影響を及ぼすおそれのある行為とノータム(NOTAM)【教則学習・周辺知識】  もよろしければご覧ください。 NOTAM の歴史 NOTAM は、附属書 15:国際民間航空条約(CICA)の航空情報サービスで指定されたガイドラインに基づいて、政府 機関および空港運営者によって作成および送信されます。1947年4 月4日に発効した CICA の批准に伴い一般的に使用されるようになり...

フォネティックコード「アルファー・ブラボー・チャーリー」通話表【教則学習・周辺知識】

アルファベットや数字を無線通信・電話(口頭)で正しく伝える方法 「アルファー」「ブラボー」「チャーリー」このような、暗号のような、呪文のような言葉を航空業界では使用されることが比較的多いので耳にする機会があるのではないでしょうか。これは、フォネティックコード(Phonetic Code)と呼ばれるアルファベットや数字を正しく伝える為の工夫です。スペリングアルファベットとも呼ばれ、アルファベットにどのような言葉を当てはめるかは、国際規格として定められています。ですから、通常は世界どこに行っても通用するものとされています。通信で使用されるだけでなく、共通の知識として前触れなくあられることがありますので、知っておいて損はないと思います。 第一次世界大戦後、音声を利用する双方向無線が開発され、普及する以前、低品質の長距離電話回線での通信を改善するために、電話のスペルアルファベット(Spelling Alphabet)が開発されたました。 アルファベットの「B」ビーと「D」ディーや「M」エムと「N」エヌのように、発音が似ているものを聞き間違えることなく伝えることを目的として、定められたアルファベットの通話表での置き換えます、航空機や船舶などの通信で主に利用されています。また、コールセンターなど対面できない際の電話での通話の間違いを防ぐためにも、利用されているようです。航空業界に関わり合いのある、旅行業界やホテル業界などでも利用されることがあるそうです。 このフォネティックコードを用いると、BとDは「ブラボー」と「デルタ」、MとNは「マイク」と「ノベンバー」になりますので、発音が似ているアルファベットも間違えずに伝えることが出来ます。 フォネティックコード表 アルファベット 読 み A ALFA アルファ B BRAVO ブラボー C CHARLIE チャーリー D DELTA デルタ E ECHO エコー F FOXTROT フォックストロット G GOLF ゴルフ H HOTEL ホテル I INDIA インディア J JULIETT ジュリエット K KILO キロ L LIMA リマ M MIKE マイク N NOVEMBER...

オーロラ発生の可能性を予報する オーロラ予報 オーロラフォーキャスト(Aurora Forecast)

NASAの衛星が捉えた宇宙からのオーロラ NASA's IMAGE Spacecraft View of Aurora Australis from Space オーロラの発生原理 太陽からは「太陽風」と呼ばれるプラズマの流れが常に地球に吹きつけており、これにより地球の磁気圏は太陽とは反対方向、つまり地球の夜側へと吹き流されています。太陽から放出されたプラズマは地球磁場と相互作用し、複雑な過程を経て磁気圏内に入り、地球磁気圏の夜側に広がる「プラズマシート」と呼ばれる領域を中心として溜まります。このプラズマシート中のプラズマが何らかのきっかけで磁力線にそって加速し、地球大気(電離層)へ高速で降下することがあります。大気中の粒子と衝突すると、大気粒子が一旦励起状態になり、それが元の状態に戻るときに発光します。これがオーロラです。発光の原理だけならば、オーロラは蛍光灯やネオンサインと同様です。プラズマシートが地球の夜側に形成されるため、オーロラは基本的に夜間にのみ出現するものですが、昼間にもわずかながら出現することもあります。このように、オーロラは、太陽活動の影響を受けた地球の地磁気に起因する自然現象なので、単純に、その美しい自然現象というだけでない意味があるという事になります。

アーカイブ

自己紹介

ノーマン飛行研究会
2015年 首相官邸ドローン事件があった年、トイドローンを手にして以来ドローンと関わっています。JUIDAの無人航空機安全運航管理者、操縦技能証明とドローン検定協会の無人航空従事者試験1級 を取得しております。無線関連の第1級陸上特殊無線技士も取得しております。 できるだけ正確に学んだことを綴って行きたいのですが、もし間違いなどありましたらご指摘いただけると嬉しいです。 このサイトはリンクフリーです。報告の必要ありません。リンクして頂けると喜びます。
詳細プロフィールを表示

広 告