Noman Flight Research Group 無人航空機(ドローン)の研究会です

広 告

4.5 機体以外の要素技術【教則学習(第4版)】

2025年6月2日  2025年6月3日 
4. 無人航空機のシステム    4.5 機体以外の要素技術

4.5 機体以外の要素技術【教則学習(第4版)】

教則の本文を黒色に、独自に追記した補足説明や注釈を別色で記載しています。

4.5.1 電波

(1) 電波の特性

1) 直進、反射、屈折、回折、干渉、減衰

電波の性質の種類と特徴は以下のとおりである。電波には障害物等の後ろに回り込む回折という性質、異なる媒質にぶつかると透過、反射あるいは屈折する性質、周波数の近い電波が重なると電波干渉が発生しお互いを減衰させる性質などがある。2.4GHz の電波は回折しにくく直進性が高いため障害物の影響を受けやすくなる。 

性質の種類 性質の特徴
直 進電波は、進行方向に障害物が無い場合は直進する。
反 射、屈 折電波は、2つの異なる媒質間を進行するとき、反射や屈折が起こる。
常に反射の法則(入射角と反射角の大きさは等しい)が成り立つ。
回 折電波は、周波数が低い(波長が長い)ほど、より障害物を回り込むことができるようになる。  
干 渉  電波は、2つ以上の波が重なると、強め合ったり、弱め合ったりする。
減 衰  電波は、進行距離の2乗に反比例する形で電力密度が減少する(進行距離が 2 倍になると電波の電力密度は 1/4 になる)。
周波数により特性は異なるものの、電波は水中では吸収されて大きく減衰される。

2) マルチパス

送信アンテナから放射された電波が山や建物などによる反射、屈折等により複数の経路を通って伝搬される現象をマルチパスという。反射屈折した電波は、到達するまでにわずかな遅れを生じ、一時的に操縦不能になる要因の一つとなっている。マルチパスによって電波が弱くなり一時的に操縦不能になった場合は送信機をできるだけ高い位置に持ちアンテナの向きを変えて操縦の復帰を試みる。 

突然、機体のコントロールが効かなくなるトラブルが、あった時は、落ち着いて
「送信機をできるだけ高い位置に持ちアンテナの向きを変えて操縦の復帰を試みる」
と、説明されているように、
プロポを天高く掲げ 帰って来~いと、お祈りしましょう
これは、冗談のような話ですが、この儀式で実際に数回、このトラブルでの機体ロストを回避した経験があります。電波の波長が短いため、cm単位の位置の違いでも電波の受信強度に変化がある可能性が高いため、理論的にも理にかなった行為です。
prayer プロポを天高く掲げ お祈りしましょう

3) フレネルゾーン

フレネルゾーンとは無線通信などで、電力損失をすることなく電波が到達するために必要とする領域のことをいう。無線通信での「見通しが良い」という表現は、フレネルゾーンがしっかり確保されている状態であることを意味する。 フレネルゾーンは、送信と受信のアンテナ間の最短距離を中心とした楕円体の空間で、この空間は無限に広がるが、電波伝搬で重要なのは第1フレネルゾーンと呼ばれる部分である。このフレネルゾーン内に壁や建物などの障害物があると、受信電界強度が確保されず通信エラーが起こり、障害物がない状態に比べて通信距離が短くなる。 このフレネルゾーンの半径は周波数が高く(波長が短く)又はお互いの距離が短くなればなるほど小さくなる(2.4 GHz帯、5.7 GHz帯の場合、2地点が100m離れたケースでは2m以下)。地面も障害物となるため、フレネルゾーンの半径を考慮してアンテナの高さを十分に確保する必要がある。 

(2) 無⼈航空機の運航において使⽤されている電波の周波数帯・用途

無人航空機の運航において使用されている主な電波の周波数帯は、2.4GHz 帯、5.7GHz 帯、920MHz 帯、73MHz 帯、169MHz 帯である。169MHz 帯は主に 2.4GHz帯及び 5.7GHz 帯の無人移動体画像伝送システムの無線局のバックアップ回線として使用される。電波の周波数帯や出力、使用するアンテナの特性、変調方式、伝送速度などによって通信可能な距離は変動する。 
ドローンの無線に関する解説は下記で詳しく説明しています。
無人航空機に使用されている無線【教則学習・周辺知識】 サイト内リンク
無人航空機との浅からぬ関係がある無線LANについて下記で詳しく説明しています。
無線LAN(Wireless LAN)の IEEE 802.11 と Wi‐Fi サイト内リンク
ワイヤレスLANなどが使用している周波数の国際的なルールを下記で説明しています。
免許不要の無線局 と ISMバンド(Industrial Scientific and Medical Band) サイト内リンク

(3) 無⼈航空機以外も含めた⽇本の電波の利⽤状況〔一等〕

電波の特性として、波長が長いほど直進性が弱く情報伝達容量が小さくなるが減衰はしにくい。逆に波長が短いほど直進性が強く情報伝達容量が大きくなるが減衰はしやすい。
無人航空機の制御用通信に多く使用される極超短波は10cm~1mの波長(周波数 300MHz~3GHz)で、超短波(波長 1~10m、周波数 30~300MHz)に比べて直進性が更に強くなるが、多少の山や建物の陰には回り込んで伝わることができる。伝送できる情報量が大きく、小型のアンテナと送受信設備で通信できることから、携帯電話や業務用無線、アマチュア無線、無人航空機など多種多様な移動通信システムを中心に、地上デジタルTV、空港監視レーダー、電子タグ、電子レンジ等幅広く利用される。
マイクロ波は1~10cmの波長(周波数3~30GHz)で、直進性が強い性質を持つため特定の方向に向けて発射するのに適している。伝送できる情報量が非常に大きいことから、衛星通信、衛星放送や無人航空機の画像伝送、無線LANに利用される。レーダーもマイクロ波の直進性を活用したシステムで、気象レーダーや船舶用レーダー等に利用される。 
⽇本の電波の利⽤状況
電波は、利用者が勝手に利用し始めると、混信など、良好な利用ができない状況に可能性が高いです。世界中でも国が、利用を管理・制限し、それぞれの目的で使用する周波数(チャンネルとも考えられます)決めて、管理しています。日本では、総務省が監督官庁になり管理しています。日本では、電波法で「「電波」とは、三百万メガヘルツ以下の周波数の電磁波をいう。」と定義されています。
詳細は省略しますが、日本で定められた周波数の割り当ての代表的なもは、下の表の様に割り当てられ、利用されています。参考に、電波に分類されている物より周波数の高い電磁波も入れています。
種 類名 称周波数(Hz)波 長利用例
電 波
(非電離放射線)
超長波(VFL)3×103~ 
100km電磁調理器
長波(LF)3×104
10km船舶・航空機用通信
中波(MF)3×1051kmAM 放送
短波(HF)3×106100mアマチュア無線
超短波(VHF)3×10710mFM 放送
マイクロ波、極超短波(UHF)3×1081m警察・消防通信 テレビ放送
センチ波(SHF)3×10910cm電子レンジ 携帯電話
ミリ波(EHF)3×10101cmレーダ
サブミリ波3×10111mm光通信システム
(太陽光)赤外線・遠赤外線3×10121/10mm赤外線ヒーター
可視光線3×10131/100mm光学機器
紫外線3×10151/10,000mm殺菌灯
放射線
(電離放射線)
エックス線(x線)3×10161/100,000mm材料検査 レントゲン写真
ガンマ線(γ線)3×10181/10,000.000mm医療

電磁波(Electromagnetic Waves)について
光や電波のように、電場と磁場の振動が互を誘導し合って空間を伝わる波のことを電磁波と言います。
荷電粒子が力を受けて、加速度運動する場合や、原子中の電子のエネルギー状態が変化する際に発生します。電磁波は空間内では、電場と磁場そのものが振動する現象で、媒質がなくても空間を伝わり、エネルギーを運ぶことができます。ちなみに、よく例えで比較されますが音波(音)は、媒質である空気がないと伝わりません。電磁波は横波で、電場と磁場の振動方向は互いに直交しており、波はその両者に直交する方向に進みます。
振動する波が1秒間にいくつ存在するかを「周波数」で表し、波が1回振動したときの距離を「波長」で表します。この周波数(波長)により電磁波の性質が異なる為、周波数により分類されています。周波数と波長には相互関係があり、周波数で表現されるものは波長に置き換えて表現される場合もあります。
周波数が高いー周波数が低い という表現は は 波長が短いー波長が長い という表現に対応しています。
波長と周波数には、「波長=光速(約30万km/s)/周波数」 の関係があります。
この計算式に無人航空機のコントロール利用されることが多い2.4GHzを当てはめてみると

波長=(3×
108)÷(2.4×10)=3÷24=0.125m=1.25cm という事になります。

波長は、アンテナの長さを決める際に重要なパラメターで、波長によってアンテナの長さが決まるため、アンテナの長さ(大きさ)を見れば、概ねどの位の周波数のアンテナなのか推測することもできます。

(4) 電波の送信、受信に関わる基本的な技術

送信機のアンテナから発射される電波の強さは、方向により異なる(無指向性のアンテナの場合は、アンテナの周囲に対して同様に発射される)。アンテナの角度は調整できるので、操縦時の送信機の持ち方や無人航空機の位置を考慮して最適なアンテナ角度を設定する必要がある。 

(5) 電波の特性に伴って発⽣する運航上のトラブルの調査・分析〔一等〕

外来電波や他の設備・機器からのノイズにより無線設備の通信環境が不安定になることがある。電波環境の調査として、スペクトラムアナライザを用いて、使用している周波数と同じ電波が現地エリアで使用されている状況や、他の設備・機器からノイズが発生していないかを確認する方法がある。様々な無線局が散在する市街地での飛行のためには、電波環境の調査は非常に重要である。 

電波環境の調査について、前項の「(2) 送信機の信号について〔一等〕」で詳しく説明していますのでそちらを見てください。
4.4 機体の構成【教則学習(第3版)】 
サイト内リンク

(6) 電波と通信に関わる基本的な計算〔一等〕

カテゴリーⅢ飛行を行うにあたっては、電波と通信に関わる基本的な計算(周波数帯や送受信間距離を踏まえ必要となるアンテナの高さ等)について理解しておく必要がある。

1) フレネルゾーン半径と必要なアンテナの高さ

フレネルゾーンの半径:R(m)、送受信アンテナ間距離:D(m)、使用周波数f(Hz)、波長:λ(m) とすると、これらの間には以下の関係がある。


上記式を用いた、送受信アンテナ間距離:100m 、使用周波数:2.4GHz のときのフレネルゾーンの 半径の具体的な導出方法を以下に示す。 上記の前提条件より、
● 送受信アンテナ間距離:D=100m
● 使用周波数:f=2.4×10Hz
● 波長:λ=(3×108)÷(2.4×10 )=0.125 m(光の速度を 3×108m/s とした場合) と求めることができる。
以上より、フレネルゾーンの半径 R は、


よって理想的なアンテナの高さは 1.77m以上となる。
なお、実際にはフレネルゾーン半径の 60%以上のアンテナ高さが確保できていれば、フレネルゾーン に障害物がない場合と同等の通信品質を確保できるといわれている。この条件にて必要なアンテナの高さを計算すると、1.77×0.6≒1.1m以上となる。


計算問題の解き方解説は
学科試験(一等)サンプル問題 計算問題の計算方法 サイト内リンク」で公開しました。
答えの出し方を見てみてください。



フレネルゾーンについてイメージしやすい様、図を作りました。
フレネルゾーンとは
フレネルゾーンが送受信点の二点間でしっかり確保できていれば安定した通信が期待できますが、図に示したように送受信点どうしが仮に見通し線上にあったとしても、フレネルゾーンが障害物に掛かっているような場合は、通信の品位が低下する可能性があります。ただし、フレネルゾーンの半径の60%以上が確保できていれば、理想的なフレネルゾーンが確保できている場合と比較しても、電波伝搬の品位は大きく低下はしません。すなわち、フレネルゾーンの半径の60%以上の確保が、必須という事になります。これは、先の計算で、示されている通り、2.4GHzでは1.1mでこれが、60%の半径ですから、受信点に対して送信点から2.2mの円柱上の射線をイメージし、その間に障害物が入らなければ安定して通信が行えるという事です。

4.5.2 磁気方位

(1) 地磁気センサの役割

地磁気センサにより、地球の磁気を検出することで機体の向き(方位)や姿勢を知ることができる。地磁気センサは正常な方位を計測しない場合があるが、それは磁力線が示す北(磁北)と地図の北に偏角が生じるためである。 

(2) 飛行環境において磁気に注意すべき構造物や環境

地磁気の検出には、鉄や電流が影響を与える。一般的に影響を与えるものは、高圧線や変電所、電波塔、鉄材を多く使用された建物、新幹線や電車の鉄道、自動車、鉄板など鉄材が多く埋め込まれた場所などがあげられる。機体の姿勢や進行方向に影響を与える場合がある。 

(3) 無人航空機の磁気キャリブレーション

無人航空機の磁気キャリブレーションとは、飛行前にその場所の地磁気を検出して方位を取得し、GNSS機能やメインコントローラーに認識させることである。磁気キャリブレーションが正しく行われていないと、機体が操縦者の意図しない方向へ飛行する可能性がある。飛行させる場所により、地磁気の方向は異なるので、磁気キャリブレーションを行うことが重要である。 

4.5.3 GNSS

(1) GNSS について

GPS(Global Positioning System)は、アメリカ国防総省が、航空機等の航法支援用として開発したシステムである。GPSに加え、ロシアのGLONASS、欧州のGalileo、日本の準天頂衛星QZSS等を総称してGNSS(Global Navigation Satellite System/全球測位衛星システム)と言う。
GNSS は最低 4 個以上の人工衛星からの信号を同時に受信することでその位置を計算することができる。機体に取り付けられた受信機により最低4基以上の人工衛星からの距離を同時に知ることにより、機体の位置を特定している。なお、安定飛行のためには、より多くの人工衛星から信号を受信することが望ましい。 
GNSS について、前項の「(1) フライトコントロールシステムの基礎」で詳しく説明していますのでそちらを見てください。
4.4 機体の構成【教則学習(第3版)】
サイト内リンク 」

GPSについて、詳しく説明しています。
全地球測位システム Global Positioning System (GPS)【教則学習・詳細  サイト内リンク

無人航空機の安定飛行に重要な役割のあるGNSS(GPS)ですが、思いもよらない事で精度の低下や、動作不良などを起こすことがあります。必須ではありませんが知っておくと役立つことがあるかもしれない知識を説明しています。
アンチドローンシステムの高度な手法 GPS(GNSS)ジャミング、スプーフィング・ミーコニング サイト内リンク
GPSジャミングマップ(GPS jamming map) 現在のジャミングを地図上に表示 サイト内リンク
無人航空機は太陽の影響を受けて飛行できなくなるのか サイト内リンク

(2) GNSS と RTK の精度

GPS測位での受信機1台の単独測位の精度は数十mの精度である。測位方式として固定局と移動局の2つの受信機を使用する RTK(Real Time Kinematic)や DGPS(Differential Global Positioning System)などの技術が確立され、これらの測位方式は数cm~数mレベルの精度の高い測位が可能である。 

(3) GNSS を使用した飛行における注意事項について

自動操縦では手動操作よりも高精度な GNSS 測位が必要である。自動操縦のためにあらかじめ地図上で設定したWay Point はGNSSの測位精度の影響を受けるため、精度が悪化した場合は実際の飛行経路の誤差が大きくなる。 GNSS の測位精度に影響を及ぼすものとしては、GNSS 衛星の時計の精度、捕捉している GNSS衛星の数、障害物などによるマルチパス、受信環境のノイズなどが挙げられる。受信機は、周囲の地形や障害物の状況を考慮して設置する必要がある。一般的に位置精度は、水平方向に比べ高度方向の誤差が大きくなる。 
タグ

広 告

広 告

人気の投稿

ノータム[NOTAM] の確認方法が変わります [AIS JAPAN] から [SWIM ポータル] へ

ノータムを確認できるWEBサイトが変更になります  令和7年2月10日~ 日本国内のノータム[NOTAM]などの航空情報は現在、国土交通省航空局が航空情報提供サービスWEBサイト「 AIS JAPAN - Japan Aeronautical Information Service Center」 https://aisjapan.mlit.go.jp/  で公開しています。このサービスは、無料で利用できますが、ユーザー登録とログインが必要となっています。 しかし、 令和7(2025)年1月10日より 、新しい航空情報共有基盤「 SWIM (System-Wide Information Management)」 https://top.swim.mlit.go.jp/swim/ の運用(登録)が開始されることに伴い、現行のAIS-JAPAN(Web)は 2025年2月10日に新サービス開始 と共に完全に廃止され、新しいSWIM(スイム)ポータルによる情報サービスへと移行します。現在AIS JAPANを利用しているユーザーも、この期日までに 改めてSWIM(スイム)ポータルへの登録が必要 となります。このSWIMサービスの利用について、当面の間、航空関係者(運航者、空港管理者、官公庁等)による利用とし、一般の方の利用は想定していません。と記載されています。 サービス開始の延期について2025/09/29に航空局交通管制部運用課より案内が出ています 【重要なお知らせ】SWIMによる情報サービス提供開始時期の見通しについて(更新)   【情報サービス利用審査開始】 令和7年10月6日(月)10時00分(日本時間)から各情報サービスの利用審査を開始します。利用申請にあたっては、各情報サービスの情報サービス概要、サービス説明書等を一読いただき、利用可能なサービスであるかを確認していただいた上で利用申請をいただけますようお願いいたします。   【情報サービスβ版の公開とプロモーション】 SWIMによる情報サービスβ版(情報サービスの正式版をリリースする前に公開をおこなうもの)の公開を予定しております。   ■β版公開期間 令和7年10月17日(金)9時00分 ~ 令和7年11月10日(月)17時00分(日本時間)   ■β版...

二等無人航空機操縦士 学科試験問題 模擬試験【練習問題】

無人航空機操縦者技能証明試験の学科試験問題をAIに作ってもらいました。 「無人航空機の飛行の安全に関する教則 第4版」を基に、AIに無人航空機操縦者技能証明試験の学科試験サンプル問題と同様の形式で試験問題風クイズを作成してもらいました。 これらの問題は過去の出題問題や予想問題ではなく、実際の学科試験と同じく教則の内容からAIが自動生成したものです。問題の正確性についてはAIによる生成後に人的チェックも加えて可能な限り確認しておりますが、完全性を保証するものではありませんので、あらかじめご了承ください。(問題に不備がありましたら 問い合わせフォーム よりご一報いただければ幸いです。) また、複数のAIに同様の指示で問題を作成してもらったため、それぞれのAIの特性や出題傾向の違いも見られるかと思います。そうした個性の違いも含めて、クイズ感覚でお楽しみいただければと思います。 これらの問題は教則の内容理解度を確認するツールとして作成しましたが、問題の質や網羅性を考慮すると、受験対策の一環としても十分にご活用いただけるレベルに仕上がっていると考えています。ただし、教則をしっかりと理解することを前提として、過去問題集や参考書と併用していただくことをお勧めします。  無⼈航空機操縦士の学科試験は <実施方法> 全国の試験会場のコンピュータを活用するCBT (Computer Based Testing) <形 式> 三肢択一式(一等:70問 二等:50問) <試験時間> 一等:75分 二等:30分 <試験科目> 無人航空機に関する規則、無人航空機のシステム、無人航空機の操縦者及び運航体制、運航上のリスク管理 上記の要領で実施されます。 従って、1問当りの回答時間は、単純に試験時間を、問題数で割ると、 一等は一問あたり約64秒 二等で36秒 で回答しないと間に合わない計算になります。これらの与えられた時間を意識しながら学習することもコツの一つかも知れません。  無⼈航空機操縦士の学科試験のベースになる教則ですが、これまで、学科試験の内容は「無人航空機の飛行の安全に関する教則(第3版)」に準拠していましたが、 ※ 令和7年(2025年)4月17日(木)より 、学科試験の内容は、「無人航空機の飛行の安全に関する教則 (第4版) 」 に準拠します。 と発表されました。...

人口集中地区(DID)の新しいデータの確認方法(令和4(2022)年6月25日~)

人口集中地区 DID(Densely Inhabited District) ドローンを飛行させる場合の許可が必要な飛行なのかどうかを判断する為の重要な基準になっている統計データの人口集中地区(DID)データが、 2022年6月25日から これまで利用していた平成27年版から、新しい 令和2年版 に、変更になりました。 これまで人口集中地区でなかった場所でも新たに人口集中地区とされている場合や、逆にこれまでDID地区であった場所でも除外されている場所など、変更されている場合があるので注意が必要です。 日本の国勢調査において設定される統計上の地区で、 人口密集地区の英語"Densely Inhabited District"の頭文字を取って「DID」とも呼ばれています。 市区町村の区域内で人口密度が4,000人/ km² 以上の基本単位区(平成2年(1990年)以前は調査区)が互いに隣接して人口が5,000人以上となる地区に設定されます。ただし、空港、港湾、工業地帯、公園など都市的傾向の強い基本単位区は人口密度が低くても人口集中地区に含まれています。都市的地域と農村的地域の区分けや、狭義の都市としての市街地の規模を示す指標として使用されます。 令和2年の国勢調査の結果に基づく人口集中地区は、国土地理院が提供している「地理院地図」、および政府統計の総合窓口が提供している、「地図で見る統計(jSTAT MAP)」を利用して確認可能です。 情報の内容はは同じですので使いやすいお好みの物を利用すると良いと思います。 国土地理院 地理院地図 人口集中地区令和2年 (総務省統計局) e-Stat 政府統計の総合窓口 地図で見る統計 (jSTAT MAP) 国土地理院 地理院地図  人口集中地区令和2年(総務省統計局) 確認方法 人口集中地区令和2年 (総務省統計局) 国土地理院 地理院地図  人口集中地区令和2年(総務省統計局)のキャプチャ

無人航空機 のための 気象情報 航空気象情報【教則学習・詳細】

無人航空機の飛行計画で活用できる、航空気象情報 無人航空機の飛行の安全に関する教則のなかで気象情報に関して、記載されています。 「6.2 気象の基礎知識及び気象情報を基にしたリスク評価及び運航の計画の立案」 6.2.1 気象の重要性及び情報源 (2) 安全な飛行を行うために確認すべき気象の情報源 この項目のなかで、 参考となる気象情報 として、「 実況天気図、予報天気図、悪天解析図 」が挙げられています。 教則にどのように挙げられているかは、下記に詳細があります。 6.2 気象の基礎知識及び気象情報を基にしたリスク評価及び運航の計画の立案 【教則学習(第3版)】 実況天気図、予報天気図の情報は、通常さまざまな気象情報のWEBサイトから得ることが出来ますが、悪天解析図は、耳なじみがないのではないでしょうか。「国内悪天解析図」として作成されているものを指していると思われますが、これは、通常の天気予報では、得ることが出来ない上空のある高度の風速や風力など、有人航空機のためではありますが、飛行に役立てるための特化型の気象情報です。航空の運航などに使用するための気象情報ですので、一般にテレビやラジオなどの天気予報として目に触れることはありません。 国内悪天解析図(ABJP) 気象レーダーや気象衛星画像に、航空機から通報された乱気流や着氷などの実況を重ね合わせ、それに予報官によるジェット気流の解析や悪天域に関する簡潔なコメント文を加えた図情報です。国内航空機の主な運航時間となる日本時間の6時から21時まで3時間ごとに一日6回作成されています。気象庁の航空気象情報提供システム(MetAir)で提供されています。 国内悪天解析図

無人航空機(ドローン)のノータム[NOTAM] の 読み方・見方【教則学習・周辺知識】

ノータムとは ノータム【NOTAM ( Notice to Airmen)】:航空従事者への通知 国が管理する航空当局(日本の場合は国土交通省航空局)が、航空従事者に対して発行する情報で、航空機の運航のために必要な情報を提供しています。 「NOTAM」ノータムは、 NO tice T o A ir M en の略称で、日本語に訳すなら「航空従事者へのお知らせ」という事です。航空情報の一つで、飛行場、航空保安施設、運航に関連する業務方式の変更、軍事演習のような危険の存在などについての情報で、書面による航空情報では時宜を得た提供が不可能な(端的にいえば間に合わない)場合にテレタイプ通信回線(CADIN及びAFTN)により配布されるものです。 ノータム【NOTAM (Notice to Air Mission)】:航空任務への通知 アメリカ連邦航空局(FAA:Federal Aviation Administration)は2021年12月2日から、NOTAM の頭字語を、Notice to Airmen から Notice to Air Mission に変更しました。この変更は名称によるジェンダー中立性を保つとともに、より広範囲な分野を包括する事を見据えてより正確な名称にするためのもので、小型無人航空システム (sUAS) 、無人気球など、他のいくつかの分野も含まれるためです。 女性もたくさん活躍している事や、無人機には人間が乗っていません(当然ですが)ので、旧名称の「Airmen」はないだろうという事です。したがって、航空任務への通知( Notice to Air Mission )という名称は、より実態に即した正確な名称に変更されたという事になります。 航空法で定められている「飛行に影響を及ぼすおそれのある行為」と、ノータムへの掲載について詳しい説明を説明しています。 飛行に影響を及ぼすおそれのある行為とノータム(NOTAM)【教則学習・周辺知識】  もよろしければご覧ください。 NOTAM の歴史 NOTAM は、附属書 15:国際民間航空条約(CICA)の航空情報サービスで指定されたガイドラインに基づいて、政府 機関および空港運営者によって作成および送信されます。1947年4 月4日に発効した CICA の批准に伴い一般的に使用されるようになり...

フォネティックコード「アルファー・ブラボー・チャーリー」通話表【教則学習・周辺知識】

アルファベットや数字を無線通信・電話(口頭)で正しく伝える方法 「アルファー」「ブラボー」「チャーリー」このような、暗号のような、呪文のような言葉を航空業界では使用されることが比較的多いので耳にする機会があるのではないでしょうか。これは、フォネティックコード(Phonetic Code)と呼ばれるアルファベットや数字を正しく伝える為の工夫です。スペリングアルファベットとも呼ばれ、アルファベットにどのような言葉を当てはめるかは、国際規格として定められています。ですから、通常は世界どこに行っても通用するものとされています。通信で使用されるだけでなく、共通の知識として前触れなくあられることがありますので、知っておいて損はないと思います。 第一次世界大戦後、音声を利用する双方向無線が開発され、普及する以前、低品質の長距離電話回線での通信を改善するために、電話のスペルアルファベット(Spelling Alphabet)が開発されたました。 アルファベットの「B」ビーと「D」ディーや「M」エムと「N」エヌのように、発音が似ているものを聞き間違えることなく伝えることを目的として、定められたアルファベットの通話表での置き換えます、航空機や船舶などの通信で主に利用されています。また、コールセンターなど対面できない際の電話での通話の間違いを防ぐためにも、利用されているようです。航空業界に関わり合いのある、旅行業界やホテル業界などでも利用されることがあるそうです。 このフォネティックコードを用いると、BとDは「ブラボー」と「デルタ」、MとNは「マイク」と「ノベンバー」になりますので、発音が似ているアルファベットも間違えずに伝えることが出来ます。 フォネティックコード表 アルファベット 読 み A ALFA アルファ B BRAVO ブラボー C CHARLIE チャーリー D DELTA デルタ E ECHO エコー F FOXTROT フォックストロット G GOLF ゴルフ H HOTEL ホテル I INDIA インディア J JULIETT ジュリエット K KILO キロ L LIMA リマ M MIKE マイク N NOVEMBER...

オーロラ発生の可能性を予報する オーロラ予報 オーロラフォーキャスト(Aurora Forecast)

NASAの衛星が捉えた宇宙からのオーロラ NASA's IMAGE Spacecraft View of Aurora Australis from Space オーロラの発生原理 太陽からは「太陽風」と呼ばれるプラズマの流れが常に地球に吹きつけており、これにより地球の磁気圏は太陽とは反対方向、つまり地球の夜側へと吹き流されています。太陽から放出されたプラズマは地球磁場と相互作用し、複雑な過程を経て磁気圏内に入り、地球磁気圏の夜側に広がる「プラズマシート」と呼ばれる領域を中心として溜まります。このプラズマシート中のプラズマが何らかのきっかけで磁力線にそって加速し、地球大気(電離層)へ高速で降下することがあります。大気中の粒子と衝突すると、大気粒子が一旦励起状態になり、それが元の状態に戻るときに発光します。これがオーロラです。発光の原理だけならば、オーロラは蛍光灯やネオンサインと同様です。プラズマシートが地球の夜側に形成されるため、オーロラは基本的に夜間にのみ出現するものですが、昼間にもわずかながら出現することもあります。このように、オーロラは、太陽活動の影響を受けた地球の地磁気に起因する自然現象なので、単純に、その美しい自然現象というだけでない意味があるという事になります。

アーカイブ

自己紹介

ノーマン飛行研究会
2015年 首相官邸ドローン事件があった年、トイドローンを手にして以来ドローンと関わっています。JUIDAの無人航空機安全運航管理者、操縦技能証明とドローン検定協会の無人航空従事者試験1級 を取得しております。無線関連の第1級陸上特殊無線技士も取得しております。 できるだけ正確に学んだことを綴って行きたいのですが、もし間違いなどありましたらご指摘いただけると嬉しいです。 このサイトはリンクフリーです。報告の必要ありません。リンクして頂けると喜びます。
詳細プロフィールを表示

広 告