4.4 機体の構成【教則学習(第3版)】
2024年3月26日
2024年6月13日
4. 無人航空機のシステム 4.4 機体の構成
種 類 | 機能・特徴 |
GNSS (Global Navigation Satellite System) | 人工衛星の電波を受信し、機体の地球上での位置・高度を取得するデバイス。(GPS(Global Positioning System)等) |
ジャイロセンサ | 回転角速度を測定するデバイス。 |
加速度センサ | 加速度を測定するデバイス。 |
IMU (Inertial Measurement Unit) | 3軸のジャイロセンサと3方向の加速度センサ等によって3次元の 角速度と加速度を検出する装置。また、メーカーによっては気圧セ ンサを含む場合もある。 |
地磁気センサ | 機体が向いている方向を地磁気を用いて取得するデバイス。 |
高度センサ | レーザーや気圧センサなどを用い地上からの高度を取得するデバ イス。 |
メインコントローラー | GPS などの各種センサの情報と送信機の指令をもとに、機体の姿 勢を制御するデバイス。 |
送信機 | 操作の指令を機体へ送信する、又は機体情報を受信するデバイス。 |
レシーバー | 送信機の情報を受け取る受信機又は送受信機。 |
GNSSは全球測位衛星システムとも呼ばれ、アメリカが運用しているGPSの他に、Galilleo(欧州)、Glonass(ロシア)、BeiDou(中国)、NavIC(インド)、みちびき[QZSS](日本)などがあります。対応している衛星システムがどれなのか(複数の場合もあります)確認することが必要です。GPSはGNSSの一つなのですが、世界で最初に構築されたことや、カーナビなどで利用されていることもあり、GPSという名称の方が認知度が高く、GNSSの代名詞のようになっています。また、GNSSは人工衛星の電波を受信し正確な原子時計の時刻を得ることができます。また、複数の衛星の電波を受信することで、受信地点での位置・高度の情報を得ることができます。蛇足ですが、GNSSのシステムは、あくまで、正確な原子時計の時刻情報などを衛星から送信しているシステムです。これらの情報を「受信」して計算処理することにより、自身(受信地点)の位置情報を得るものですので、テレビやラジオの様に受信機です。電波を送信して(衛星と、やり取りして)位置情報を得るものではありません。しばしば、誤解があることがありましたので、追記します。
GPSについて、詳しく説明しています。
全地球測位システム Global Positioning System (GPS)【教則学習・詳細
無人航空機の安定飛行に重要な役割のあるGNSS(GPS)ですが、思いもよらない事で精度の低下や、動作不良などを起こすことがあります。必須ではありませんが知っておくと役立つことがあるかもしれない知識を説明しています。
GPSのセキュリティについて詳しく説明しています
アンチドローンシステムの高度な手法 GPS(GNSS)ジャミング、スプーフィング・ミーコニング
GPSジャミングマップ(GPS jamming map) 現在のジャミングを地図上に表示
無人航空機は太陽の影響を受けて飛行できなくなるのか
(2) 無人航空機の飛行に用いられる各種センサの原理及び使用環境
1) ジャイロセンサ
ジャイロセンサは、単位時間当たりの回転角度の変化を検出する装置であり、これにより、風などで機体が傾いたときに、無人航空機の傾きや向きの変化を検出し、フライトコントロールシステムに情報を伝える。
2) 加速度センサ
加速度センサは3次元の慣性運動(直行3軸方向の並進運動)を検出する装置であり、無人航空機の速度の変化量を検出するセンサである。ジャイロセンサと合わせて機体の姿勢を制御する。
3) 地磁気センサ
地磁気センサは、地球の磁力を検出して方位を測定する。
4) 高度センサ
高度の計測には主に以下のセンサがある。
気圧センサは、気圧の変化を歪みゲージを利用して読み取り、高度を計測する。超音波センサは音波の反射時間から高度を計測する。LiDAR はレーザー光(赤外線)を照射し反射時間から高度を計測する。
気圧高度計
高度センサで説明されている「気圧センサは、気圧の変化を歪みゲージを利用して読み取り、高度を計測する」で説明されている、気圧センサは気圧高度計を示しています。気圧の変化を高度に連動させて表示させるもので、有人の航空機にも必ず搭載(例外はありますが小型プロペラ機からジャンボジェット機まで)されている物です。通常、大気の圧力は高度が高くなるにつれて低くなります。これは自分のいる場所の上にどれだけの大気が存在しているのかによって変化します。高度の高い場所に行くという事は、その分、自分の上に存在する空気が少なくなるということを意味しますので、気圧は低くなる(自分の上の大気が少なくなる(軽くなる)→大気に押される力が減る)ということになります。高度と気圧の関係には反比例が成り立つため、現在地(測定地)の気圧を把握することで高度も把握することが可能です。
実際には、ダイヤフラム(隔膜)と呼ばれる膜の表面上の歪みを計測しています。ダイヤフラムは圧力を受けることにより変形しますので、これを利用し、この物理的な歪みにより生じる抵抗変化を電気信号に変換して圧力を検知・計測しています。大気の圧力を計る圧力センサーとも考えられると思います。
気圧高度計
高度センサで説明されている「気圧センサは、気圧の変化を歪みゲージを利用して読み取り、高度を計測する」で説明されている、気圧センサは気圧高度計を示しています。気圧の変化を高度に連動させて表示させるもので、有人の航空機にも必ず搭載(例外はありますが小型プロペラ機からジャンボジェット機まで)されている物です。通常、大気の圧力は高度が高くなるにつれて低くなります。これは自分のいる場所の上にどれだけの大気が存在しているのかによって変化します。高度の高い場所に行くという事は、その分、自分の上に存在する空気が少なくなるということを意味しますので、気圧は低くなる(自分の上の大気が少なくなる(軽くなる)→大気に押される力が減る)ということになります。高度と気圧の関係には反比例が成り立つため、現在地(測定地)の気圧を把握することで高度も把握することが可能です。
実際には、ダイヤフラム(隔膜)と呼ばれる膜の表面上の歪みを計測しています。ダイヤフラムは圧力を受けることにより変形しますので、これを利用し、この物理的な歪みにより生じる抵抗変化を電気信号に変換して圧力を検知・計測しています。大気の圧力を計る圧力センサーとも考えられると思います。
LiDARはライダーと読みます。 Light Detection And Ranging(光による検知と測距)の略称で、レーザー光を用いたレーダーです。レーザー光のパルスを放ち、その反射波をとらえることにより、物標までの距離を距離を測定することができます。ドローンに搭載される様な対地の距離の観測だけでなく、自動車の自動運転などの運転支援技術の発展に伴い、周辺の対象物を観測するために導入されています。また空港などでは航空機の離着陸時に乱気流による事故防止のために空港周辺の風速や風向きを観測する、空港気象ドップラーライダーなど地上から上空の大気の塵や微粒子を観測するものなどの開発、導入が進んでいます。他のセンサー技術より比較的新しい技術で、高価な技術(搭載されている機体は高級機が中心)と言えます。
ちなみに、似たような名前のレーダー(radar [Radio Detecting And Ranging])は電波探知測距と言われるように電波を用います。観測に用いるものが電波になったものです。利用され始めたのは、レーダーの方が先で、様々な利用がされて来ました。これらの中から、電波よりレーザー光や赤外線などを用いた方が都合の良い物がライダーに置き換わっています。
ちなみに、似たような名前のレーダー(radar [Radio Detecting And Ranging])は電波探知測距と言われるように電波を用います。観測に用いるものが電波になったものです。利用され始めたのは、レーダーの方が先で、様々な利用がされて来ました。これらの中から、電波よりレーザー光や赤外線などを用いた方が都合の良い物がライダーに置き換わっています。
4.4.2 無人航空機の主たる構成要素
(1) 無人航空機で使われる電気・電子用語
電池に関係する用語、単位、求め方及びその概要は以下のとおりである。
用 語 | 単 位 | 求め方 | 概 要 |
電 圧 | V | 抵抗(R)×電流(A) | ● 電圧は、電池残量(現時点で放電できる電気量)で決まる。電池の残量が減ると電池の電圧は下がる。 ● 放電(飛行)中の電圧降下は、電気回路の配線抵抗とバッテリーの内部抵抗によって決まる。 |
出 力 | W | 放電時電圧(V)×電流(A) | ● 単位時間当たりのエネルギー量を表す。 ● 出力が一定の場合、電池残量が少なくなると、放電時電圧が低下するため、電流は増大する。 |
容 量 | Ah | 電流(A)×時間(h) | ● 満充電から、電圧が決められた最低電圧(終止電圧)になるまでの間に、利用できる電気量。 ● 放電時の電流の大きさや温度によって、利用可能な容量は変化する。 |
エネルギー容量 | Wh | 放電時電圧(V)×電流(A)×時間(h) | ● 容量と同様に、電流や温度によってエネルギー容量は変化する。 |
充電率 | % | 現時点で放電できる電気量(Ah) 満充電時に放電できる電気量(Ah) | ● 満充電で放電できる電気量と現時点で放電できる電気量の比率を表す。 ● 0%は仕様上の完全放電状態を、100%は満充電状態を表す。 |
(2) モーター、ローター、プロペラ
電動の無人航空機においてローターを駆動するモーターには、ブラシモーターとブラシレスモーターがあり、ブラシレスモーターの特徴は、メンテナンスが容易(モーター内部の清掃、ブラシの交換が不要等)、静音、長寿命であることが挙げられる。また、ローターは通常回転方向(時計回転(CW:クロックワイズ)/反時計回転(CCW:カウンタークロックワイズ))に合わせた形状となっており、モーターの回転方向に合わせて取り付けるよう注意が必要である。
ブラシモーターとブラシレスモーター
ブラシモーターは、コイルが回転する構造になっているモーターで、コイルの接点にブラシを使用しているため、ブラシ付きDCモーターともDCモーターとも呼ばれています。モーターそのものの分類としては整流子モーターと呼ばれます。制御性や効率がよく、小型化が容易なため、最も多く使われているモーターで、ブラシレスモーターと比較して、一般的には安価なものが多いです。高速で、長時間使用すると、劣化が激しく性能が著しく低下する事があります。いわゆる「ブラシがチビる」と呼ばれる現象がおこり、徐々に飛行性能や操作性能が低下し飛行できなくなる場合があります。長期間使用する場合、摩耗したブラシを交換するなどメンテナンスが必要になります。
ブラシモーターとブラシレスモーター
ブラシモーターは、コイルが回転する構造になっているモーターで、コイルの接点にブラシを使用しているため、ブラシ付きDCモーターともDCモーターとも呼ばれています。モーターそのものの分類としては整流子モーターと呼ばれます。制御性や効率がよく、小型化が容易なため、最も多く使われているモーターで、ブラシレスモーターと比較して、一般的には安価なものが多いです。高速で、長時間使用すると、劣化が激しく性能が著しく低下する事があります。いわゆる「ブラシがチビる」と呼ばれる現象がおこり、徐々に飛行性能や操作性能が低下し飛行できなくなる場合があります。長期間使用する場合、摩耗したブラシを交換するなどメンテナンスが必要になります。
このように摩耗するブラシを構造上なくした物が、ブラシレスモーターと呼ばれます。
モーターの基本構成部品は、コイル、磁石、ロータが主体です。筒状に固定した素子を周辺に配置し、中心の回転する軸に固定した素子(これをロータと呼びます)があり、互いが磁力で引き寄せられたり反発したりを繰り返し軸を回転させる仕組みです。ブラシモーターは筒状に固定した永久磁石を周辺に配置し、中心の回転する軸に固定したコイルがあります。
このコイルに電気(直流)を流すことで磁力が発生し、軸が回転をする仕組みです。回転するコイルに電気を流す為に接触型の端子で電気を供給する必要が出てきます。当たり前のことですが、電線で繋ぐと回転できません。この接触型の端子の事を「ブラシ」と「整流子」と呼びます。
ブラシレスモーターの場合、固定している物と、回転するものをブラシモータと逆にしています。筒状に固定したコイルを周辺に配置し、中心の回転する軸に固定したが永久磁石あり、回転する軸の方に永久磁石を置くことで、回転する部分に給電する必要をなくしています。この為、ブラシレス(ブラシ無し)ということです。
ブラシモータの「ブラシ」と「整流子」には、給電とは別に、軸の回転運動をスムーズにするための回転制御の役割があります。これは、ブラシの接触するタイミングを整流子を互いに接触しないように、120°ごと(360°÷3枚)に間隔をもって配置して、接触(通電)のタイミングをずらしています。そのため軸の周囲の一部を電磁石にまた一部は通電しないコイルのままの状態を作ってスムーズな回転につなげています。「ブラシ」と「整流子」のない
モーターの基本構成部品は、コイル、磁石、ロータが主体です。筒状に固定した素子を周辺に配置し、中心の回転する軸に固定した素子(これをロータと呼びます)があり、互いが磁力で引き寄せられたり反発したりを繰り返し軸を回転させる仕組みです。ブラシモーターは筒状に固定した永久磁石を周辺に配置し、中心の回転する軸に固定したコイルがあります。
このコイルに電気(直流)を流すことで磁力が発生し、軸が回転をする仕組みです。回転するコイルに電気を流す為に接触型の端子で電気を供給する必要が出てきます。当たり前のことですが、電線で繋ぐと回転できません。この接触型の端子の事を「ブラシ」と「整流子」と呼びます。
ブラシレスモーターの場合、固定している物と、回転するものをブラシモータと逆にしています。筒状に固定したコイルを周辺に配置し、中心の回転する軸に固定したが永久磁石あり、回転する軸の方に永久磁石を置くことで、回転する部分に給電する必要をなくしています。この為、ブラシレス(ブラシ無し)ということです。
ブラシモータの「ブラシ」と「整流子」には、給電とは別に、軸の回転運動をスムーズにするための回転制御の役割があります。これは、ブラシの接触するタイミングを整流子を互いに接触しないように、120°ごと(360°÷3枚)に間隔をもって配置して、接触(通電)のタイミングをずらしています。そのため軸の周囲の一部を電磁石にまた一部は通電しないコイルのままの状態を作ってスムーズな回転につなげています。「ブラシ」と「整流子」のない
ブラシレスモーターは、周囲に配置したコイルに、回転に応じた良いタイミングで通電してやる必要が出てきます。 ローターの回転位置を検出しローターの位置に合わせてコイルに電流を流す為、外部にインバーター回路が必要で、インバーター回路とセットでしか使用できません。
ブラシモーターとブラシレスモーター: 特徴比較
ブラシモーター | ブラシレスモーター | |
寿 命 | 短い (ブラシがすり減る) | 長い (ブラシがない) |
速度と加速度 | 中 | 高 |
効 率 | 低い | 高い |
電気的ノイズ | あり (ブラシ接触の電磁ノイズ) | 少ない |
音響ノイズ | あり (ブラシがすれる音) | 少ない |
コスト | 低 | 中(外部インバーター回路が必要) |
(3) モーター制御
モーターの回転数は ESC(エレクトロニックスピードコントローラー)により制御されており、モーターで駆動されたローターの回転数を増減させることにより揚力や推力を変化させている。
4.4.3 送信機
(1) 送信機から無人航空機へ送信される指令の流れ
無人航空機への指令は送信機から機体へ送られる。機体では、受信機が指令を受け取りメインコントローラーからモーター又はサーボを駆動させ機体を操縦している。
(2) 送信機の信号〔一等〕
送信機の信号は、同じ周波数帯が密集しているような場所では複数の電波が干渉して混信による誤作動が起きる可能性がある。電波混信の予防として飛行させる前に測定器などで周辺の電波の状態を確認することが望ましい。無人航空機で使用される送信機からの電波だけでなく、無線LANやWi‐Fi、高圧送電線の影響を受ける場合もあるため、周辺環境の確認が必要である。
電波混信の予防として飛行させる前に測定器などで周辺の電波の状態を確認することが望ましい。
混信を防ぐため、電波の状態を確認する目的で測定器を用いる場合、スペクトラム・アナライザ[略称 スペアナ](指定された周波数範囲で周波数掃引(スキャン)を行ない、 横軸を周波数としてスペクトラムの表示を行なう測定器)を用いることが、ベストですが、かなり高価な測定器です。(近年は、ハンディタイプや安価なものもあるようですが)簡易的な測定であれば、広帯域受信機などでも代用できるのではないかと思います。注意が必要なのは、実際にフライトに利用している周波数の周辺をきちんと測定できる物を選択する事だと思います。
電波混信の予防として飛行させる前に測定器などで周辺の電波の状態を確認することが望ましい。
混信を防ぐため、電波の状態を確認する目的で測定器を用いる場合、スペクトラム・アナライザ[略称 スペアナ](指定された周波数範囲で周波数掃引(スキャン)を行ない、 横軸を周波数としてスペクトラムの表示を行なう測定器)を用いることが、ベストですが、かなり高価な測定器です。(近年は、ハンディタイプや安価なものもあるようですが)簡易的な測定であれば、広帯域受信機などでも代用できるのではないかと思います。注意が必要なのは、実際にフライトに利用している周波数の周辺をきちんと測定できる物を選択する事だと思います。
また、混信調査を実際に行った経験から言いますと、事前に別な日に調査する場合には、フライト予定時間に合わせることをおすすめします。撮影のロケハンなどでもいえる事ですが、飛行させる予定時間と、できる限り同じ条件で、行っておかないと思わぬトラブルが発生する可能性があるからです。
平日・休日・曜日・時間などできる限り、条件を合わせて、行うことが望ましいと思います。混信の場合、影響を与えてくるものが24時間、365日、電波やノイズを出し続けているとは限らないからです。考えられることは、近所の工場の操業時間には工場の機械からノイズが出ている。や、近所の会社の営業時間中・・・、近所の病院の診察時間中・・・など、考えあられることは、多数あります。折角、調査しても全く違う条件での調査は、あまり意味のない物になってしまう可能性があるということです。
平日・休日・曜日・時間などできる限り、条件を合わせて、行うことが望ましいと思います。混信の場合、影響を与えてくるものが24時間、365日、電波やノイズを出し続けているとは限らないからです。考えられることは、近所の工場の操業時間には工場の機械からノイズが出ている。や、近所の会社の営業時間中・・・、近所の病院の診察時間中・・・など、考えあられることは、多数あります。折角、調査しても全く違う条件での調査は、あまり意味のない物になってしまう可能性があるということです。
(3) 送信機の操縦と機能
無人航空機は、送信機のスティックを操作して、機体の重心を中心とする 3 軸の回転(ピッチ(機首を上下する回転)、ロール(機体を左右に傾ける回転)、ヨー(機首の左右への旋回))やローターの推力の増減といった機体の動きの制御を行う。以下のとおりスティック操作による機体の動きの割り当てはモードにより異なる。また、スティックのニュートラル位置を調整するためのトリムスイッチがある場合もある。
① 回転翼航空機の場合
(a) スロットル: ローターの推力(揚力)の増減(機体の上昇・降下)
(モード1)右側スティックの上下操作 (モード 2)左側スティックの上下操作
(b) エレベーター: ピッチ方向の操作 (機体の前後移動)
(モード1)左側スティックの上下操作 (モード2)右側スティックの上下操作
(c) エルロン: ロール方向の操作 (機体の左右移動)
(モード 1/モード2)右側スティックの左右操作
(d) ラダー: ヨー方向の操作(機首の左右旋回)
(モード1/モード2)左側スティックの左右操作
② 飛行機の場合
(a) スロットル: プロペラの推力の増減(機体の前後移動)
(モード1)右側スティックの上下操作 (モード 2)左側スティックの上下操作
(b) エレベーター: ピッチ方向の操作 (機体の上昇・降下)
(モード1)左側スティックの上下操作 (モード2)右側スティックの上下操作
(c) エルロン: ロール方向の操作
(モード 1/モード2)右側スティックの左右操作
(d) ラダー: ヨー方向の操作
(モード1/モード2)左側スティックの左右操作
機体をコントロールする為の信号を送信する送信機は、通称「プロポ」と呼ばれています。
比例を表す、プロポーショナル[proportional]式と呼ばれ、これを略して「プロポ」と呼ばれています。 送信機のスティックを動かした量に比例してサーボが動く(動作する)ということを意味しています。
機体をコントロールする為の信号を送信する送信機は、通称「プロポ」と呼ばれています。
比例を表す、プロポーショナル[proportional]式と呼ばれ、これを略して「プロポ」と呼ばれています。 送信機のスティックを動かした量に比例してサーボが動く(動作する)ということを意味しています。
4.4.4 機体の動力源
(1) 機体の動力源
無人航空機の機体の動力源として主に、電動かエンジンが使用されている。電動機のメリットは、振動、騒音が少ないため軽量化できるが、飛行時間が短いというデメリットがある。エンジン機のメリットは、飛行時間が長く長距離飛行が可能であるが、エンジンによる騒音が電動に比べ大きいというデメリットある。
(2) バッテリーの種類と特徴
1) リチウムポリマーバッテリーの特徴
リチウムポリマーバッテリーはゲル状のポリマー電解質を採用したバッテリーであり、多くの無人航空機に使用されている。
リチウムポリマーバッテリーには、エネルギー密度が高い、電圧が高い、自己放電が少ない、メモリ効果(充電容量が次第に減少する効果)が小さい、電解質が可燃物である等の特徴がある。
2) リチウムポリマーバッテリーの取り扱い上の注意点
リチウムポリマーバッテリーの取り扱い上の注意点として以下ものが挙げられる。
- 充電器は満充電になると充電を停止するが、過充電となる場合がある。
- 過放電や過充電を行うと、急速に劣化が進み、寿命が短くなる。
- 過放電や過充電の状態では、通常利用時よりも多くのガスがバッテリー内部に発生し、バッテリーを膨らませる原因となる。
- バッテリーが強い衝撃を受けた場合、発火する可能性がある。
- バッテリーのコネクタの端子が短絡した場合、発火する可能性がある。
3) 複数のセルで構成されたリチウムポリマーバッテリーの取扱上の注意
セル間の充電量のバランスを補正しながら充電することが重要である。バランスが著しく崩れたまま充電を行うとセル間の電圧差が生じ、セルによって過放電となる現象が起こり、急速に劣化が進む。そのため、セル間の充電量のバランスをとるバランスコネクタがついているタイプは、充電時にそのコネクタを充電器へ接続することが重要である。
リチウムポリマーバッテリー(LiPoバッテリー)は、リチウムイオンポリマー2次電池の通称であり、従来の液体電解質の代わりにゲル状の導電性ポリマーを利用した構造を持っています。この構造により、ケースが軽量化されるとともにエネルギー密度が高くなり、ドローンなどのパワーを必要とする機器に最適です。一方で、折り曲げや衝撃、過充電・過放電、ショートによる発火・炎上の危険性があるため、注意が必要となります。
バッテリーについて 以下に詳しくまとめました
無人航空機のバッテリー リポ(LiPo) / リチウムイオン【教則学習・詳細】
バッテリーについて 以下に詳しくまとめました
無人航空機のバッテリー リポ(LiPo) / リチウムイオン【教則学習・詳細】
(3) エンジン
エンジン機は、エンジンの回転を動力にローターを回転させ揚力と推力を得ている。エンジンには2ストロークエンジン、4 ストロークエンジン、グローエンジン等の種類がある。エンジンの種類により、潤滑方式、燃焼サイクル、点火温度等が異なる。燃料にも種類があり、それぞれのエンジンでメーカーが指定する燃料を適切に扱う必要がある。燃料にオイル等を混ぜた混合燃料を使用する場合は、適切な混合比での使用が必要である。
4.4.5 物件投下のために装備される機器
無人航空機で物件投下する機器は、救命機器等を機体から落下させる装置や農薬散布のために液体や粒剤を散布する装置などがある。物件投下装置は、意図せず物件が落下しない構造となっているが、投下装置の多くは、搭載位置や対象物や手順などが定められているため、各投下装置の特性と機能を熟知しなければならない。特に、物件投下用のウインチ機構で吊り下げる場合は、物件の揺れ、投下前後の重心の変化に注意しなければならない。
農薬散布する装置の多くは、それぞれ決められた飛行速度、飛行高度などが定められている。ただし、風などの影響で対象区域より飛散する可能性があるため、第三者や第三者の土地に農薬が誤って散布しないように配慮しなければならない。
4.4.6 機体又はバッテリーの故障及び事故の分析
(1) 機体の故障や事故の分析〔一等〕
無人航空機の多くは、機体の異常情報を機体本体または送信機のランプや音などで知らせる機能を有している。また、飛行軌跡や機体の情報(フライトデータ)を記録している機種もあり、事故の原因分析を詳細に確認することも可能である。事故や故障の原因調査は、機体や飛行の安全性を向上させる重要な要素であるので、フライトデータを記録することが推奨される。
(2) リチウムポリマーバッテリーに関わる電気的なトラブル〔一等〕
リチウムポリマーバッテリーに関わる主な電気的トラブルを以下に示す。
- 満充電のリチウムポリマーバッテリーを使用し無人航空機を急上昇させた場合、直後にバッテリー残量が減った様に見えることがある。これはバッテリーから大きな電流が流れたことで一時的な電圧低下が生じることが原因である。
- 冬季の飛行では飛行時間が半減することがある。気温が低下すると放電能力が極端に低下するためである。
- リチウムポリマーバッテリーは高密度なエネルギーを大容量で出力できるが、バッテリー残量が減り、電圧低下してくると急激に出力が弱くなり、墜落の原因となるので注意する。
冬季の飛行では飛行時間が半減する
冬季、特に寒冷地での飛行では特に注意が、必要です。バッテリのー温度低下により通常の性能を発揮できなくなる可能性がある場合は、バッテリーウォーマーなどバッテリーを最適な作動温度に温めておく専用の装置を利用するなど、事前準備や工夫が必要です。